
Proceedings 2005 IEEE International Symposium on
Computational Intelligence in Robotics and Automation
June 27-30, 2005, Espoo, Finland

Using Horocol to program a society of agents or teams of
robots

Dominique Duhaut, Yann Le Guyadec, Michel Dubois
Valoria

Universite de Bretagne Sud
Lorient Vannes, Morbihan, France
dominique.duhaut@univ-ubs.fr

Abstract - In this paper we present an example of the use of
the Horocol language for programming a society or teams of
robots. This example shows the principal features of the Horocol
language. This language has been developed to offer a solution to
express the behaviours of a set of teams of robots or agents. We
focus on the originality of this language which is in the
instructions for programming the team coordination.

Index Terms - multi-agent systems, self-reconfigurable
robots, RoboCup, programming language.

I. INTRODUCTION

Expressing the code of the behaviour of teams of robots is a
difficult task. It is due to the fact that robots are often
physically programmed in different languages with very
specific primitives linked to the hardware of the robot. We met
this problem in two types of distinct applications: RoboCup
[23] and the self reconfigurable robots [6, 7, 20]. In Robocup
the teams of robot play football [19]. Robot are not industrial
type. So, because they are "hand made", their programming is
very different from one to another. It is thus necessary to be
able to express when and how a robot player, which plays
attacker, decides to become defender (and vice versa). Here
we look for the reevaluation of a behaviour.

For self reconfigurable robots another problem is that, for
instance, the walking motion implies synchronisation in the
movement of the robot components. Then we need to express
that all the robot modules participating in the movement,
carries out their actions at the same time, synchronously.

We then notice that traditional languages we could use did not
provide us simply these two constructions which appear useful
to us: the expression of an attempt of reevalutation of its
behaviour, the nature of the parallel execution of the group of
robots.

In this paper in part II we make a quick review of current
solutions for robot programming. In section III we give quick
definition if the language Horocol, in part IV we present an
complete example to show how is written the social
programming and, at the team level how we can develop
cooperation and coordination. In part V, we discuss the
implementation of Horocol on a specific hardware system.
Finally in section VI we give some conclusions.

II. ROBOT PROGRAMMING

Robot programming is a difficult spot studied since many
years [13]. Often this field covers some very different concepts
like: methods or algorithms (planning, trajectory
generation...), or classically, architectures for robot control,
usually hierarchical : centralised [1], reactive [8], hybrid [2, 9,
16]. Compared with these high level considerations,
languages are developed in order to implement them [17, 21].
Different approaches appeared through functional [3, 4, 12]
deliberative or declarative [5, 16, 18], synchronous [17]
characteristics. In any way, we can schematically summarise
the difficulties of robot programming in two great
characteristics:
* one is that programming of elementary action (primitive)

on a robot is often (even always) a program including
many process running in parallel with real-time
constraints and local synchronisation

* the other is that in its interaction with the environment the
program driving the robot (sequence of primitives) must
be able to carry out traditional features: interruption on
event or exception and synchronisation with another
element.

The recent introduction of teams of robot, where cooperation
and coordination are needed, introduces an additional
difficulty which is that the programming is not reduced any
more to a single physical system. The problem is then to
program the behaviour of a group of robots or even a society
of robots [10, 11, 14, 15]. In this case (except in the case of a
centralised control) programming implies the loading in each
robot of a program which is not necessarily identical to others
because of the characteristic of the robots : different hardware,
different behaviours and different programming languages.
These various codes must in general synchronised to carry out
missions of group (foraging, displacement in patrol...) and to
have capacities of reconfiguration according to a map of
cooperation communication.

From the human point of view it is then difficult to have
simultaneously an overall vision of the group on three levels:
the social level where we look for the global behaviour of the
all set of robots, the team level where we focus on a specific
group of robot and the individual robot.

0-7803-9355-4 / 05 / $20.00 ©2005 IEEE. 487

Authorized licensed use limited to: UNIVERSITE DE BRETAGNE SUD. Downloaded on April 9, 2009 at 03:44 from IEEE Xplore. Restrictions apply.

The main idea of our work is thus the give a formal definition
of a general language, Horocol to express these three levels of
team programming: Society, Group, Agent. Society and Agent
programming are very classical, the original part of this work
is on the group programming where we introduce two original
instructions : parofseq/seqofpar and the where instruction.

III. HOROCOL INTRODUCTION

The syntax of the Horocol language is described using a
simple variant of Backus-Naur-Form. [item] express that the
item is optional and *item* that item can be repeated.
Keywords are in bold character.

A. Social programming
This section introduces the highest level

programming in Horocol. The goal here is to express how the
society of robot is composed and show its evolution. In this
section we find classical constructions that can be compared to
other robots or agent programming language see [17].

Horocol: := *import file.xml;*
programHorocol program-name{

agents set_declaration
* global instruction ; *

}
The use of import is discussed in the section IV. Let's assume
that the file.xml gives the basic primitives of the robot.

Declaration section

This section is used to declare all the agents in the society and
the list of variables, events used.

This part define the set of types of robots and what external
files give the "physical" implementation of these types. The
list of agent instantiating the robots.

social_variable :: type_indication identifier list
[limited(agents-list, agents_type)] [= expression];

social_event ::= event identifier_list;

means that the variable is read only for a group. This definition
does not suppose that the implementation over the real set of
robot (xml files) is possible, see section IV on this subject.

Programming section

This section is used to express the general behaviour of the
society of agents. Assignment [B4], condition [B5] and loops
[B6] are very classical instructions.

The [B 1] expresses the concurrency between several
programs. This means that all branch begin at the same time. It
can be compared to spawn [3] or compose [11] or PIQ [18] or
even more classicalfor each agent in ... [12]

[P1] defines a program PI that cannot be interrupted versus °
P]' defines a background task that will be interrupted when all
branch are closed. For instance 11 ([Pl],°P2°) expresses that P1
and P2 begins together but when P1 will finish then it will stop
P2. In the case of P2 finishing first the 11 instruction waits for
the end of P1 to gtb in sequence.

B. Coordination programming

This section is the most original part of this work. It is
used to express how a team of robot is working together and
how and when it reconfigure its behaviour.

local_program: :=
[global_variable assignment] [B4]
1*[agent programming]* [C1]

[C1] agent programming :: =

488

global_instruction ::=
global_parallel [B11]
global_noninterrupt_action [B2]
global_interrupt_action [B3]
global_variable assignment [B4]
global_if [B5]
global-loop [B6]

[B1] global_parallel
| (*global instruction,* global_instruction)

[B2] global_noninterrupt_action ::=
[local_program]

[B3] global_interrupt_action ::=
0 local_program 0

agents set_declaration:
agents type declaration
*agent list *

[social variable]
[social_event]

agents_type_declaration
type agents_type_identifier use file.xml;

agent list ::= agent_type identifier
identifier=newAgent([agent_type_identifier]);

[B4] global_variable assignment::=
identifier = expression

[B5] global_if--=
if (test) { local_program } else {local_program)

[B6] global_loop ::=
while (test) { local_program }

Define a list a social variables (with classical types : char, int,
array ...) and event 'used for synchronisation). When defined
at this level they are supposed visible by all agents. limited

Authorized licensed use limited to: UNIVERSITE DE BRETAGNE SUD. Downloaded on April 9, 2009 at 03:44 from IEEE Xplore. Restrictions apply.

<agent name>.methodo
I seqofpar(agenLtype_list)

[protected_declaration]
where without event

}
parofseq(agent_type_list){

[protected _declaration]
where with event

}

[Dl]

[D2]
[D3]

[D2]
[D4]

A local program expresses how a group of robots is working.
It can be restricted to a specific [Dl] call to a primitive of an
agent or use the seqofpar/parofseq construction.
seqofpar and parofseq is the second level of parallelism (the
fisrts one is at the social level with 11 instruction). Here we are
expressing the parallelism at the team level.
seqofpar is an control instruction for which each line of the
internal program (where_without_event) will be executed
synchronously over all agents concerned by this branch. This
means that all the agents execute at the same time one
instruction and move to the next one. On an other hand, the
parofseq is an control instruction for which all agents are
running their program in parallel with no synchronization.

[D2] protected _declaration
type indication identifier list [limited(agents_list,

agents class)] [= expression];
I event identifier_list;

Variables or events define at this level are visible only by the
agent involved in this part of code (ie selected by the seqofpar
or parofseq instruction).

The where instruction is used to select in a team of agents
those having a true precondition. Notice that there can be
several where in a parofseq or seqofpar. Each agent concern

by this part of code (in the agent_typejist of parofseq or

seqofpar) check the test of the where (from the first one to the
last one). If the test is true then the agent will execute the
internal code [D5, E or D6] else it will check the next where.

[D5] [private_declaration]

Variables or events declare at that level are only visible by the
agent satisfying the test of the where instruction. These
variables or events are duplicated in each agent.

[D6] when-event::= when test => * local instruction; *

In the case of a parofseq instruction a react part can be
present. It looks like a exception treatment in standard
languages. When an event is emitted (see [F7] in the next
section) then the execution of the code is stopped and the
control jump to the react part to look for a treatment to this
event.

C. Agent programming

This part is used to define the behavior of a single agent. This
isfinally what is "really" executed by the robot the rest of the
code expresses when it begins, what code is executed, what
variables or events are shared.

[E] local_instruction :=
basic primitive(
I<agent>.basic_primitiveo

[FO]
[F1]

These two instruction call for a primitive instruction on the
robot itself [FO] or on an other specific robot [F 1].

if (test) { local_instruction }
else { local-instruction } [F2]
while (test) { local_instruction } [F3]
loop local-instruction end loop [F4]
exit [F5]
variable_assignement [F6]

These instructions are the classical constructions for condition,
assignement or loops inside a agent.

Iemit event [F7]

Is used to emit an event. This event can be a social event if
declared at the social level (it is then broadcast to all agents of
the application) or a protected event (it is then shared by a

group a agent in a parofseq). An event can also be used
locally inside an agent behaviour to program some reactive
architecture. The react part [D6] are local response to events.

I resume [F8]
I restart [F9]
reevaluate [FO0]

[F8] is used inside a react part and expresses that the next
instruction to be executed it the one that was to be executed
when an event was emitted.
[F9] restarts the local_instruction of the where_with_event
[D3].
[F 10] is an other powerful construction related to the where
instruction. When reevaluate if executed then the control

489

[D3] where_without_event
where (test) {

[private_declaration] [D5]
* local_instruction; * [E]

}
[D4] where_with_event::=

where (test) {
[private_declaration]
* local_instruction,

[react
* when event; *1 [D6]

}

Authorized licensed use limited to: UNIVERSITE DE BRETAGNE SUD. Downloaded on April 9, 2009 at 03:44 from IEEE Xplore. Restrictions apply.

moves back in the code to the first where of this block of
program and starts the checking of the where(test) set of
instruction. This is used to change the behaviour of a robot. If
after an event, the robot modifies some internal state then it
can now be member

IV. EXAMPLE

In this section we show how Horocol can be used to
express the behavior a real multi-agent system. The basic idea
of this example is to show all the important features of the
language. So we take a general example and will discuss in the
next section the dependency on real robots.

Let's consider a school with 3 groups of students: A,B,C.
They follow teaching courses in: Math, Sport, English and
Puzzle. The rooms for teaching are numbered 101, 102, 103
and stadium. The list of teachers is Marie (Puzzle), Betty
(English), Georges (Sport), Albert (Math).

The schedule of the day is the following:

1 Group A & B Group C
Room 101 Stadium
Math with Albert Sport with Georges

2 Group A Group B PROG22 GroupC
Room 101 Room 102 Room 103
English with Puzzle with Marie Math with
Betty Albert

3 Group A & B Group C
Stadium Room 101
Sport with English whit Betty
GeorgesPROG31

Table 1: schedule of the day

In this example we will suppose that it exist two kinds of
agents: Student and Teacher.

Social program

import Srobots.xml;
import Trobots.xml;

the real robots are define in xml files (see section IV)

programHorocol School
type student use Srobots.xml;
type teacher use Trobots.xml;
student al,, a150 = newAgent(student);
teacher ti, t2, t3, t4: = newAgent(teacher);

this is the declaration of 150 agents having type student and 4
agents having type teacher

{
al.setldentification ("Bob", "A");

ti. setIdentification ("Marie", "Puzzle"),

This is the initialisation part where we define the name of the
student and his group and where the teacher are define with
their name and the subject teach. We suppose that
setIdentification() is a primitive define in both types teacher
and student and implemented in the xml file.

11 ([Progll], [Prog]2]);
11 ([Prog21], [Prog22], [Prog23]);
11 ([Prog31], [Prog32]);
I

This defines the three part of the day described in table 1.It is a

sequence of team activities running in parallel. Here
ProgI 1, .. Prog32 are team level programs in Horocol. We will
now describe two of them: Prog22 (corresponding to the
middle of the table 1: Group B, room 102, Puzzle with Marie)
and Prog3 1 (last line first row in table 1 Group A & B Stadium
Sport with Georges).

Coordination programming

* Prog22: is an example to explain how we could
implement a blackboard architecture [24]. We assume

here that for the type student some primitives are defined:
groupls(, moveTo(, searchPiece(, myldentification(,
tryPieceOnPuzzle(. Same for the type teacher : moveTo
(, subjectls(, search(, addList(.

parofseq (student, teacher){ HI Prog 22
event handRaised(string x, int y);
string studentAccessingPuzzle;

This concern the two types : student and teacher. The
execution will be parallel without synchronisation. One event
is protected (shared by all agent running this part of code) is
used by student to inform when they raise their hand. One
variable is protected and is used to know the name of the
student authorised to access to the puzzle (i.e. the blackboard)

All students in group B will execute this code and will define
locally a variable pieceToTest, this variable is duplicated in
each agent. Each agent moves in the room 102 and begins the
loop. First searches for a piece to try on the puzzle (here each
agent is running its own code searchPiece() so the execution
time can be very different from one to an other). When a piece
is found the agent emit the protected event to inform the

490

where (student.groupls() = "B") { /student code
int pieceToTest;
moveTo(102);
loop
pieceToTest = searchPiece(;
emit handRaised (myIdentification(, pieceToTest);
while(not(studentAccessingPuzzle = myldentificationo)

{ wait() };
tryPieceOnPuzzle (pieceToTest);
end loop

Authorized licensed use limited to: UNIVERSITE DE BRETAGNE SUD. Downloaded on April 9, 2009 at 03:44 from IEEE Xplore. Restrictions apply.

teacher and wait for his turn, then tries his piece on the puzzle
and search for a new one with the loop.

If the teacher speciality is "puzzle" then he executes this code
(here we assume that only one teacher is having this speciality
instead of what they would be several executions of this part of
code). The teacher agent implements a local list to remember
the list of students waiting to access to the puzzle. The agent
moves in the room 102 and loops. He searches in the waiting
list for a student to go at the puzzle and assign his name. Each
time that an event handRaising is emitted then he memorise in
the waitingList the name X of the student on the number Y of
the piece, and continues its execution where it was interrupted.
This construction can manage priority. The search() program
can give a priority to someone in the waitingList.

In this example, the teacher and the students are making an
active waiting (while loops). In Horocol, we could use event
to awake some agent sleeping by the semantic of the react part
of a where instruction.

l}l
end of the parofseq. Here going in sequence suppose that all
the agents involved in the parofseq have terminate their code.
If one of them is missing the program is blocked. We can by
pass this problem by using specific event to kill process.

* Prog3l : this part of the example shows how is used
synchronous programming in Horocol. The idea here is to
simulate the behavior of a group of people in a rowing
boat. One (the teacher) is the leader giving the tempo and
the students are divided in two groups : one on the left of
the boat the other one on the rigth side. They must be a
coordination of each movement of everybody.

To simplify we assume that they all are in "stadium" (part 1).

seqofpar(student, teacher){ //Prog 31

Agents concerned by this code must be student in group A or
B and on the left of the boat.
where ((student.groupIs(="A" student.groupls(="B") &
not student.isOddo) {

loop upRight(; 115
moveRightFront(; 1/6
downRight (; 117
moveRightBack(; 118

end loop
1;
Agents concerned by this code must be student in group A or
B and not on the left of the boat.
where (teacher.subjectls(="sport") {

loop
say('Hi"); /l 9
say("Ho"); H 10

end loop

In this last part we select the teacher (again we assume that
there is only one in the boat).
The execution will be decomposed has follow:
- step 1 instrucions 1 and 5 and 9
- step 2 instructions 2 and 6 and 10
- step 3 instrucions 3 and 7 and 9
- step 4 instruciotns 4 and 5 and 10
and start again.

This kind of construction is very important in the field of
reconfigurable robots where we need to express that all
modules of the general structure are performing their actions
simultaneously.
This example could be programmed by other ways but we
retrain this presentation to show how the communication
between agents can be treated in Horocol. This can implement
constructions like in [14].

V. MAPPING HoRocOL ON A SET OF REAL ROBOTS

By these example we see how the Horocol programs are linked
to the real robot by the use is the import and use
constructions.
The idea of Horocol is to assume that some primitive actions
or variables are available for each type of agents. Then when
we write an Horocol program we manipulate these primitives
under some parallel: fj seqofpar or parofseq constructions or
variable assignment.

491

where ((student.groupIs(="A" student.groupls(="B") &
student.isOddO) {

loop upLeft(; 1 1
moveLeftFront(; / 2
downLeft() ll 3
moveLeftBack(; 114

end loop

where (teacher.subjectls(="Puzzle") { / teacher
code

list waitingList;
moveTo(102);
loop
while (not empty(waitingList)) {
studentAccessingPuzzle = search(waitingList);
wait(;

};
end loop

react
when handRaising (X,Y) => addList(X,Y, waitingList);

resume;
1;

Synchronous execution for all agents executing this part of
code this means that each agent executes one instruction at the
same time that all the others.

- -

Authorized licensed use limited to: UNIVERSITE DE BRETAGNE SUD. Downloaded on April 9, 2009 at 03:44 from IEEE Xplore. Restrictions apply.

In fact, depending on the hardware structure of the robots, wxe
have no guaranties that these parallel constructions are really
possible to implement. For instance if the robots are verx
simple: contact sensor, light sensor no conmmunication (think
of a Lego Mindstorm robot) then constructions like: seqofpar
or direct call to a specific robot [FI] are not possible.

To know if it is possible to compile the Horocol program in a
equivalent code running on the real robot the Horocol
compiler uses the information included in the XML file. This
file is including three levels of information:
- the robot primitive or local public xvariables specification,
- the snwtax ofthe language used to program this robot,

the horocol sistein primitives available on this physical
target.

The compiler checks first with the information stored in the
horocol svstem if all the basics features exist to implement
social or protected variable, parallel constructions. direct
information exchange, variable assignment.
The second phase is to check if all the primitives used in the
Horocol program for the associated type are present in the
robot primitive.
Finally a purely syntactic rewriting transformation is
performed from the Horocol source code to the specific robot
language. Of course this last pass is specific to each robot
language so it needs to be rewrite for each kind of target. In
our case we tested this transformation on our specific language
developed in the Maam project [22].

VI. CONCLUSION

The Horocol language proposed here allows the description of
multi-agents. multi robots behaviour at three different levels
social, team and local. We define two levels of parallelism-
one, for the social organisation, expressing how teams are
distributed in an application and the second one inside a team.
The originality of Horocol is at this team level in the
instructions: parofseq/seqofpar, for synchronous or
asynchronous programming, coupled to the where instruction
for precondition evaluation coming with the reevalute to
check for dynamical change of behaviour. From an Horocol
specification program it is possible to rewrite the program in
the effective language for a specific robot,

ACKNOWLEDGMENT

This project is supported by the Robea project of the
CNRS. All references to people participating to this work can
be found in [221.

REFERENCES
[1] J. S Albus & all. NASA/NBS Standard Reterence Model tbr Telerobot

Control System Architecture (NASREM). NBS Technical Note 1235.
National Bureau of Standards, Gaithersburg MD. 1987.

[2] R. Alur & all. "Hierarchical Hybrbd Modelinig oJ LEnbedded Systemns.
Proceedings of EMSOFT'01: First Workshop on Embedded Software.
October 8-10. 2001

[3] J. Armstrong The development in Erlang', ACM sighpla international
conference on fiiuctional programming p 196-203. 1997

[4] M.S. Atkin & all "HAC a unified view of reactive and deliberative
aetivitxv Notes of the European conf on artificial intelligence 1999

[5I M. Dastani & L. van der Torre Priograrinung Boid-Plan agents
deliberating about conflicts along defeasible nmental attitudes and plans'
AAMAS 2003

[61 C. Gueganno and D. Duhaut "A hardware software architecture -for the
control of self reconfigurable robots" DARS 04 7" symposium on
distributed autonomous robotics systems.june 32-5, loulouse France.

[E7 M. Jorgensen & all "Modular ATRON modules for a self=
reconfigurable robot" IEEE/RSJ int coaS on intelligent robots and
systems IROS 2004 Sendai Japan

[8l P. Hudak & all " Arrows, robots, and functional reactive programming,"
lecture note in computer scinece 159-187 Spinger Verlag 2002

[9 F. F. Ingrand & all "PRS: a high level supervision and control language
for autonomous mobile robots". IEEE 'int con" or robotics and
automation Minneapolis, 1996

[10] E. Klavins A formal model of a nmulti-robot control anid
communication task" IEEE conf on decision and control. 2003

[111 E. Klavins "A language for modeling and programming cooperative
control systems" Int conf on robotics and automation ICRA 2004

[11 CG. King "Tapir: the evolution of an agent control language" Ameciicati
association of artificial intelligence 2002.

[131 T. Lozano-Perez & R. Brooks "An approach toautomatic robot
programming" Proceedings of the 1986 ACM fourtecth annual conf on
computer scinec 1986, ACM Press

[14] D.C. Mackenzie & R. Arkin "Multiagent mission specification ane
execution" Autonomous robot vol 1 num 25 1997

[15] F. Mondada & all "Swarm-bot for concept to implementattiri
IEEE/RSJ int conf on intelligent robots and systems IROS 2003

[161 D. Paul Benjamin & all " Integrating perception, language an problem
solving in a cognitive agent for mobile robot" AAMAS'04 july 19-2>^
2004. New-York

[17] 1. Pembeci & G. Hager A comparative review of robot programming
languages" report CIRL - Johns Hopkins University august 14, 2001

[18] J. Peterson & all " A language for declarative robotic programming' Int
conf on robotics and automation ICRA 1999

[19 T. Vu & all "Monad: a flexible architecture for multi-agent contro1
,AAMAS'03

[20] E.Yoshida & all "Planning behaviors of modular robots with coherent
structure issing randomized method" DARS 04 7 symposium or
distributed autonomous robotics systems, June 23-25, Toulouse France.

[21] C. Zielinski "Programming and control of multi-robot systems" Conft
On control and automation robotics and vision ICRARCV 2000 dec 5-8
200a, Singapore

[22] http://www.univ-ubs.fr/valoria/duhaut/maan.
[23] http :,`'ww-wrobocup.org
[24] Barbara Hayes-Roth home page: http:./ksl-web staniford.edu/people/bhr'

492

Authorized licensed use limited to: UNIVERSITE DE BRETAGNE SUD. Downloaded on April 9, 2009 at 03:44 from IEEE Xplore. Restrictions apply.

