
Abstract. This work inserts in the general field of collective
robotics. In this paper, we present the results on the design and
the conception of (1) our robotics component called Atom, (2)
the informal semantics of the HoRoCoL language and two
possible execution models. The expressivity of the language is
illustrated on a simple example. Specific compilation problems
are discussed.

I. INTRODUCTION

This project takes place in the more general field of reconfigurable
modular robotics. We can mention several various experiments.
The M-TRAN (Modular Transformer - AIST) described in [1], is a
distributed self-reconfigurable system composed of homogeneous
robotic modules. CONRO (Configurable Robot - USC), is a robot
made of a set of connectible, autonomous and self-sufficient
modules [2]. ATRON, is a lattice based self-reconfigurable robot
[3], and also, PolyPod (Xeros) [4], I-Cube (CMU) [5]. These robots
generally consist in modules working together and where each
module is permanently linked to at least one other.
Some inspiration of our robot comes from the biological world of
the ants: each one has a certain autonomy, but they can help each
other to achieve particular tasks (e.g. building a bridge). It consists
in several autonomous entities, called Atoms, due to their physical
look (see Fig. 1).
Programming such reconfigurable systems is a difficult task [6].
This field covers very different concepts like : methods or
algorithms (planning, trajectory generation...), or classically,
architectures for robot control, usually hierarchical : centralised [7],
reactive [8], hybrid [9, 10, 11]. Some languages are developed in
order to implement these high level concepts [12, 13]. Different
paradigms are also proposed: functional [14, 15, 16], deliberative or
declarative [17, 11, 18] and synchronous [12]. In any way, we can
schematically summarise the difficulties of robot programming in
two great characteristics:
• programming of elementary actions (primitives) on a robot is

often a program including many process running in parallel
with real-time constraints and local synchronisation

• interactions with the environment are driven via traditional
features: interrupt on event or exception and synchronisation
with another element.

The recent introduction of teams of robot, where cooperation and
coordination are needed, introduces an additional difficulty :
programming the behaviour of a group of robots or even a society
of robots [19, 20, 21, 22]. In this case (except in the case of a
centralised control) programming implies to load a specific program
on to each robot because of the different characteristics of robots :
different hardware, different behaviours and different programming
languages. These distinct programs must in general be synchronized
to carry out missions of group (foraging, displacement in patrol, ...)
and have reconfiguration capabilities according to a map of
cooperation communication.
From the human point of view it is then difficult to have
simultaneously an overall vision of the group on three levels: the
social level where we look for the global behaviour of any robot,

the team level where we focus on a specific group of robot and the
individual robot level.

The definition of our general language HoRoCoL is driven by these
three levels of team programming: Social, Group, Agent. Social and
Agent programming are very classical, the original part of this work
is on the group programming where we introduce two original
instructions : ParOfSeq/SeqOfPar and the where instruction.

This paper presents the design (section II) of our robotics modular
component, called Atom, and preliminary results on the prototype.
Section III introduces the HoRoCoL language. Its expressivity is
illustrated on a simple example (section IV). Section V summarise
specific compilation problems.

II. HARDWARE ARCHITECTURE OF MAAM
In this section, we summarize the main aspects of the MAAM
hardware architecture which is the experimental physical platform
for HoRoCoL. We will first present the mechanichal and electronic
aspects, and after, we will briefly see the communication system.

A. Electronic and mechanical features
An atom is composed of six legs which are directed towards the six
orthogonal directions of space. They allow the atom move itself
and/or couple to another one. The first walking prototype of atom
appears on Fig. 1. This prototype embeds all the electronic and
software functions described in this paper. It does not include the
pincers.

Figure 1. Two steps in the project: simulation and walking prototype.

The control/command system has to :
(i) Control 12 axis (2 for one leg): each leg is driven by two servo-
motors and a servo-motor is controlled by a PWM (Pulse Width
Modulation) signal. The servo includes a motor, an angle reducer
and a P.I.D. regulator.
(ii) Control the coupling of two legs: the mechanic system under
consideration provides a flip-flop control. The same control must
alternatively couple then uncouple the two atoms.
(iii) Identify the legs at the touch of the ground: an atom may have 3
or 4 legs touching the ground at the same time. The pincers make
the installation of a sensor hard. In our case, this information is
obtained by processing some control-signals of the PID regulator.
(iv) Line up 2 legs: the mechanical connection between two atoms
requires the lining up of two legs. We propose an infrared
transmitter/receiver system. The research for an optimal position
needs the use of 6 analog-to-digital converters for each atom. It may

Using HoRoCoL to Control Robotics Atoms
Y. Le Guyadec, C. Guégano, M. Dubois, D. Duhaut

Valoria
University of South-Brittany

Vannes – France
Contact: Dominique.Duhaut@univ-ubs.fr

be useful to activate or desactivate the transmitter if necessary: that
leads to add 6 digital outputs in our system.
(v) Communicate with another atom or with a host computer: this
aspect is discussed later.

The architecture represented by the diagram in Fig. 2 takes the
previous enumeration of functions and constraints into account.

Figure 2. Embedded electronics : TE505 CSoC with external memory, AD
convertor card and external bluetooth module for radio-communication

It is build around a configurable system on chip (CSoC), which
integrates a micro-controller and a FPGA (Field Programmable
Gate Arrays) in a single component. The micro-controller provides
usual functions of a computing architecture: central unit, serial line,
timers, internal memory,... FPGA enables to realize the equivalent
of an input/output card with low level functionalities. It provides
most of classical combinatory and sequential circuits (latches,
counters, look--up--tables, comparators ...). We've opted for the
Triscend TE505 CSoC. This component integrates a CPU 8051, a
FPGA with 512 cells and an internal 16KB RAM.
Inputs an outputs: all IO functions are distributed among FPGA
and external cards. As many as possible functions are embedded.
PWM control: position control of servo-motors is obtained PWM.
The position is proportionate to the width of a periodic pulse. The
period is about 20 ms, the range of the pulse width is from 0.9ms to
2.1ms The servo performs the position loop.and the FPGA provides
the 12 PWM control signals. Contact detection is taken from the
internal circuitry of the servo-motor. By processing the command
pulses with some combinatory logic and a retriggerable monostable
we get a boolean information.
Infrared positioning: coupling one atom to another involves lining
up two legs. The accuracy of alignment will be fixed by mechanic
constraints of the system under development. The solution which
has been carried for lining up two legs implements infrared
transmitter/receiver. It involves a dialog between two atoms that
become alternately transmitter then receiver. To do that, 6 channels
digital-to-analog converters are required, and 6 outputs (taken on
the CSoC) to control the transmitters. Analogic to digital
conversion is done with a max117 working in pipelined mode.
Signals used for driving the convertor in this mode are also
generated by the FPGA, so we have just to read data registers.
Coupling control: for coupling one atom to another, we have to
activate a pincer. Due to size and weight feature, we propose to
drive the pincer with a SMA affector (shape memory alloy).

B. Embedded software
The dynamic aspect of the embedded software is described in Fig.
3. The interpreter is the normal background task. Communication
and program management (upload and download) are coded in
interrupt routines. When the connection is established, a new
program can be uploaded on the fly and launched immediately. In a
centralized approach, the main program is desactivated, and robots
execute simple orders received from the communication layer.
An important point of view in our approach, is the modelisation of
low level functions of the robot in a XML file. The robot keeps in
memory a card of all its capabilities, and can export it towards a
host. With this feature, a priori knowledge on robot capabilities is
not required, provided that it gives its own interface (DTD).
The interpreted program uses only the instructions described in the
interface, and, in a centralized control, the HoRoCoL program
sends orders according to this interface.

Figure 3. General architecture of the embedded software. The
communication manager receives orders and new programs. It also manages

bluetooth connections and disconnections. The program interpreter is
activated or stopped by the communication manager.

C. Communication between modules
The communication is an inescapable aspect in a multi-agent
architecture. The characteristics of the selected technology has
consequences on the final software architecture. An atom must
communicate with one or more of its neighbors (autonomous
approach), and/or with a host-system (centralized approach). Our
realization is build with bluetooth technology that gives us suitable
responses for noise constraint, miniaturization of modules and low
cost. We use it just above the HCI (Host Control Interface) layer.
That allows us to control the complete bluetooth device (link
management and baseband). HCI packets contain either user data or
command. All layers from radio to HCI are implemented in the
industrial module (we can see it on Fig. 2).

There are several ways to manage a set of communicating robots
with bluetooth: we can let the modules inquire after the host and
require a connection link when they found it; we can broadcast
messages for all robots in the bluetooth area; we can try to establish
dedicaced links with all the detected modules. In a first approach,
we have chosen the third solution. We can create links between the
host and robots, and ask a robot to connect to another one to
transmit received orders to it. This leads to an ad-hoc network. The
communication between agents is held by a class SetRobots
wich provides services (connection, disconnection, inquiry ...), and
notifies all suscribed tasks for events. This class is reusable for
many applications. Fig. 4 shows a set of 8 modules detected in the
bluetooth area.

Figure 4. Eight CPUs are communicating with the host. Basic commands,
and/or request for XML description can be performed.

III. THE HOROCOL LANGUAGE

HoRoCoL stands for Homogeneous Robotics Component
Language. It was initialy designed to control specific agents, but its
features also allow to control generic ones. It enables to describe the
behaviour of sets of homogeneous agents (deliberative part plus
actuative part) in a unique centralized program (expressed in an
extended Java like syntax) which communicates and synchronizes
local or distant agents. Thus, it takes advantage of the parallel
model with shared variables for high level control (global shared
variables are used for communication purpose), but also offers the
parallel model with distributed memory (where communication are
implemented via message passing). Furthermore, following the
SPMD programming model (Single Program Multiple Data) [24],
HoRoCoL implicitly works on the set of all agents: it is not
necessary to name agents for methods invocation. This property
facilitates scalability, test and reuse. The main problem with
writting classical parallel programs is to ensure consistency of
shared variables and absence of deadlock. Thus, HoRoCoL offers
implicit synchronization mechanisms and guaranties consistency of
access.
Supported agents are implemented via active objects (software
agent) or reactive systems (robotic agent) doted with
communication features (bluetooth in our experiments). From the
programmer's point of view, each agent embeds a XML interface it
exports to a dedicaded host. This interface is imported into a
HoRoCoL program using the import keyword. It presents the list
of functions implemented by an agent. The DTD (Document Type
Definition) attached to each agent type, associates to each operation
an information on the communication protocol and gives an objet
oriented approach to the description of an agent type (especially in
the case of robotics agents). The HoRoCoL language is thus
independend of communication protocols and synchronisation
mechanisms. It uses this interface has an entry point to
communicate with agents.

In HoRoCoL, a high-level point of view is offered to the
programmer who describes (deliberative) control of agents,
according to 3 layers in the language : social, group and local. Local
programming can be expressed using any language supported by the
agent, provided that its XML interface is exported to the dedicated
host. The chalenge of compiling such programs is to feel the gap

between this centralized point of view and distributed asynchronous
executions.

Figure 5. General Architecture – centralized model

Two execution models are investigated: centralized and distributed.
In the centralized execution model (described below), a dedicated
server loads and interpretes the HoRoCoL program, runs it localy
communicating with distributed agents. This execution model is
very close to the abstract point of view proposed by HoRoCoL. In
the distributed execution model a local version of the HoRoCoL
program is replicated onto each agent. Many problems have to be
adressed in this case: they are discussed in section V
(Implementation and Compilation Issues).

In this paper, we only focus on the definition of the centralized
execution model (see Fig. 5).

A. Social layer
This layer allows to control (possibly empty) sets of agents - for
instance maam, players or clock – in a parallel shared point of view
(shared scalar variables, shared events, seq, if, loop, parallel). The
following skeleton shows a typical social layer program:

import agentType1.xml;
import agentType2.xml;
program_Horocol aSqueleton {
 agentType1 use agentType1.xml;
 agentType2 use agentType2.xml;
 event aGlobalSharedEvent;
 int aGlobalSharedInt;
 agentType1 a1,a2 = newAgent(agentType1);
 agentType2 a3,a4 = newAgent(agentType2);
 ||(°GP1°,[GP2]);
}

In this example, two kind of agents are manipulated. Their
functionnal interface is imported and 2 first-class type identifiers
are declared: agentType1, agentType2. Agents of that type are
allocated, then programs GP1 and GP2 runs in parallel on distinct
sets of agents, depending of agent type conditions (see section
group layer below). The construct ||(GP1,GP2) enables
parallelism. It terminates when GP1 and GP2 have terminated. The
skeleton also illustrates interruptible program °GP1° and

uninterruptible program [GP2]. The informal meanning is that
°GP1° terminates as soon as GP2 does.

Communications are possible using shared variables. Their
implementation has to ensure consistency of access. They are
manipulated using classical sequential control structures. This
sequential flow control can spawn into several flow control
(threads). Each (distant) agent is then represented by a centralized
thread, called proxy thread, running its private version of the
HoRoCoL program. This thread chooses its branch of social
parallelism according to agent-type conditions, declaring/accessing
local variables.

B. The group layer
This layer allows to describe asynchrony (ParOfSeq), synchrony
(SeqOfPar) and events. The ParOfSeq/where construct allows to
describe asynchronous concurrency in a single program manner. We
consider the following abstract skeleton of the ParOfSeq
construct:

ParOfSeq(agentType) {
 event aSharedEvent;
 int aSharedInt;
 where (localCondifion1) {
 event aLocalEvent;
 int aLocalInt;
 P1;
 }
 where (localCondition2) {
 P2;
 }
react
 when aSharedEvent => P3;
 when aLocalEvent => P4;
}

In this program, agentType enables to select a type of agents. For
instance players or maam. The following bloc only applies to that
subset of (homogeneous) agents. Each proxy thread agent chooses a
where branch regarding to local conditions stored in the agent (to
which one can access using its published XML interface). The
associated bloc (P1 or P2) is then executed asynchronously. In this
bloc, local or global events can be emitted using the emit
construct. Local events are declared and allocated by any proxy
thread running the considered bloc: they can be used to program
reactive behavior of a given agent. Shared events are broadcasted to
all active agents in the current scope. Events are treated in the
react bloc associated to each ParOfSeq. Specific keywords are
available here: resume, restart and reevaluate.
• resume enables to continue the current where in sequence.
• restart enables to reexecute the current where bloc,

restarting at its first intruction.
• reevaluate enables to reexecute the current ParOfSeq bloc.

So a new where branch can be choosen, depending on the
(changed) internal state of the agent.

Note that the react bloc and the associated keywords resume,
restart and reevaluate are only available in the ParOfSeq
construct. This is due to the asynchronous underlying paradigm
which associates a proxy thread to each agent. In a synchronous
bloc, this arise to ambiguous semantics.

In the SeqOfPar/where construct, agents execute their where bloc
synchronously. Two cases can be studied, depending on the number
of where branches attached to the current SeqOfPar (2 branches
in the skeleton below).

SeqOfPar(agentType) {
 int aSharedInt;

 where (localCondifion1) {
 int aLocalInt;
 I11;
 I12;
 I13;
 }
 where (localCondition2) {
 I21;
 I22;
 // skip inserted
 }
}

In the case of a unique where branch, agents that satisfy the where
condition execute the associated bloc synchronously. The
complementary set is desactivated for the rest of the current
SeqOfPar, waiting for the active set to terminate its where bloc.
Note that since HoRoCoL offers a high level point of view, the
grain of synchrony is the instruction (HoRoCoL instruction or
message sent to a distant agent). So, for a given set of agent, all
occurs as if a synchronisation barrier was placed at the end of each
instruction. In the case of several where branches in the same
SeqOfPar, each proxy agent localy decides which where branch
(possibly none) it will execute depending on the evaluation of local
conditions. Then, all the branches are computed synchronously: the
second instruction of each bloc (I12 and I22) starts when the first
instruction of all the where branches (I11 and I21) is terminated
for all active agent. In the case of dissymetric where branches (with
different sizes), all occurs as if skip instructions (which does
nothing and just terminates) where added at the end of each bloc to
reach the right size (the size of the longest where bloc). In the case
of loops, unrolled loops are considered.

IV. USING HOROCOL TO CONTROL ROBOTICS ATOMS: AN EXAMPLE

In this section, the HoRoCoL architecture descibed below is applied
to robotics Atoms. Fig. 6 shows the UML class diagram
corresponding to the XML DTD exported by any Atom involved in
a HoRoCol execution.

FIGURE 6. (SIMPLIFIED) CLASS DIAGRAM OF AN ATOM.

Following the centralized execution model, it enables to
communicates with distant atoms using classical remote method
invocation. This class diagram1 reflects the hierarchy of the
mechatronics and mechanics components of an Atom :
• An Atom is composed with 6 legs and embeds several sensors.
• Each Leg offers 2 degrees of freedom driven by 2

ServoMotor that may be controled using position
parameters : see the get/setTargetPosition, goTo and
moveTo methods. moveTo offers control of trajectories (a
straight line from origin to destination) while goTo does with
the current servomotor speed (possibly segmented trajectories)

• Each Leg is equiped with an infrared transmitter/receiver
system which is used either to line up 2 legs (ie computation of
optimal positions) before mechanical connection arise, or to
communicate between neighbors. These functionalities are
available using getValue/setOn/setOff.

• Each Leg is also equiped with a TouchSensor that enables to
deduce collisions, contact with ground, ... It should permit to
infer knowledge on the current orientation of a given atom.

• A Pincer enables to connect Atoms.

This API is imported in the HoRoCoL example program below
using the MAAM.xml file. The goal for a row of interconnected
atoms is to walk during 3 minutes. In order to maintain it in
balance, it is necessary to lift only one leg out of 2 per atom at a
given moment.
Programming the social level consists in the instanciation of all
agents, their initialization and the execution in parallel of two
programs concerning each type of agent.
We make the assumption that the initial state (S0) is a row of inter-
connected atoms having their servo-motors in their canonical
position i.e. legs of all the atoms are centered (see Fig. 7.a). To
facilitate the comprehension of the source code, some constants are
provided in the environment: left and right respectively indicate
the index of the left legs and right ones which are on the ground. In
the same way constants min, middle and max respectively indicate
the minimal, default and maximum position of any servo-motor.

import MAAM.xml;
import Clock.xml;
programHorocol walkingRowWithTimeOut {
 type maam use MAAM.xml;
 type clock use Clock.xml;
 maam a1, a2, a3 = newAgent(maam);
 clock watch=newAgent(clock);
 // Suppose S0 be the initial state
 // Runs in parallel 2 control programs
 ||(°aRow°,[aClock]);
}

Program aClock runs a countdown and terminates after 3 minutes.
The Clock.xml file defines the unique method waitSec(). After
3 minutes, the program aClock terminates, which causes the
termination of the program aRow which was launched in
interruptible mode as defined by the °P° construct.

int time=180;
ParOfSeq(clock) {
 where (true) {
 while (time>0) {
 // send message to wait one second
 waitSec(1);
 time--;
 }
 }
}

1 a full version is available at :
www-valoria.univ-ubs.fr/Dominique.Duhaut/maam

Figure 7. States S0, S1, S2, S3 of the main loop

Program aRrow describes calculation allowing the row to advance
(1 iteration = 1 step for all the atoms). It is splitted in 3 phases
which are repeated in a while loop (loop invariant: all the legs on
the ground are behind – see state S1).
• The first phase (from S0 to S1 or from S3 to S1, see Fig. 7.b)

consists in positioning left and right legs behind. For that,
it is not necessary to lift the legs. Since no synchronism
between atoms is required, the ParOfSeq construct is used.

• In the second phase (from S1 to S2, see Fig. 7.c), left legs are
moved ahead for the odd atoms and right legs are moved ahead
for the even ones.

• The last phase (from S2 to S3, see Fig. 7.d) puts the
complementary legs ahead.

These two last phases require a synchronism between atoms. Thus,
there is a sequence of 2 SeqOfPar. In order to maintain the row in
balance, we have to ensure that all the atoms have terminated the
current moveTo() order of the left or right legs before starting
the next move. When the goal is reached (the 3 minutes are spent),
the program leaves the infinite while loop.

while (true) {
 ParOfSeq(maam) {
 // phase 1
 where (true) {
 getLeg(left).moveTo(min,min);
 getLeg(right).moveTo(min,min);
 }
 };
 SeqOfPar(maam){
 // phase 2
 where (getID()%2==1) {
 getLeg(left).moveTo(min,middle);
 getLeg(left).moveTo(max,middle);
 getLeg(left).moveTo(max,min);
 };
 where (getID()%2==0) {
 getLeg(right).moveTo(min,middle);
 getLeg(right).moveTo(max,middle);
 getLeg(right).moveTo(max,min);
 };
 };
 SeqOfPar(maam){
 // phase 3
 where (getID()%2==1) {
 getLeg(right).moveTo(min,middle);
 getLeg(right).moveTo(max,middle);
 getLeg(right).moveTo(max,min);
 };
 where (getID()%2==0) {
 getLeg(left).moveTo(min,middle);
 getLeg(left).moveTo(max,middle);
 getLeg(left).moveTo(max,min);

 };
 }
}

As you can see, this algorithm is adapted to rows with unspecified
size (scalability). Furthermore, its structure is close to intuitive
mind.

V. IMPLEMENTATION AND COMPILATION ISSUES

In this section, we discuss compilation problem and implementation
issues, depending on the target robot (simulation under ODE2 [25]
or real Atoms) and the execution model (centralized or distributed).
To achieve these different plateforms, several MAAM.XML files are
under definition. They include information on :
• the robot primitives or local public variables specification;
• the language syntax used to program this robot;
• the HoRoCoL system primitives available on the target.
One can distinguish 2 kind of problems :
– Programming the robot primitives and building the

corresponding MAAM.XML file depends on the robot underlying
system. In case of a reactive system (our simulation approach),
non-blocking messages are sent. So a mechanism of
acknowledgment or future may be used to provide information
on methods termination. This may be usefull to provide
accuracy of movements. This is necessary to ensure the
semantics of some HoRoCoL constructs : SeqOfPar,
ParOfSeq, ||. These mecanisms enable to build the necessary
synchronisation barriers.

– The implementation of some HoRoCoL concepts (SeqOfPar,
broadcast of events, shared variables, react, resume,
reevaluate, restart) depends on the target execution model
(centralized or distributed). In case of a distributed execution
model, the HoRoCoL program is replicated onto each Atom.
events, access to (virtualy) shared variables (physically
replicated) and synchronisation mechanisms have to be
implemented on top of the bluetooth network. Consistency of
access to shared variables has to be ensured in this case. We
study the possibility to use the Distributed Reactive Object
Model [23] on top of the bluetooth device to have broadcast of
events (in the centralized execution model, events are simply
emitted and handled on the server side), the synchronization
barriers and the global instant concept (shared logical clock).

VII. CONCLUSION

We have presented a high level set of tools for designing multi-
robots architectures, and more particularly the Maam self-
reconfigrable robot that is our contribution. Because the problems
of motion for a crystal and docking between atoms are very hard,
we propose to focus first on high-level tool build above a robust
communication layer instantiated in the control system and in each
module. Moreover, by using XML for robotic design, we get a
methodological approach that should really improve the efficiency
when designing new robots: the high-level tools don't change, and a
great part of the embedded software remains the same.

HoRoCoL is designed on top of these developpements. It offers the
programmer a high-level point of view by mixing different
paradigms: parallel with shared variables, distributed with
communication by message, SPMD. Specific constructs are
proposed to deal with implicit synchronisations:
SeqOfPar/ParOfSeq/where. We think this language is well
adapted to modular robotics, but it can also be used to control
software agents.

2 Open Dynamics Engine www.ode.org

REFERENCES
[1] S. Murata, E. Yoshida, A. Kamimura, H. Kurokawa, K. Tomita, S.

Koraji, "M-TRAN: Self-Reconfigurable Modular Robotic System" in
IEEE/ASME transactions on mechatronics, Vol.7 No.4 2002

[2] M. Rubenstein, K. Payne, W-M. Shen, "Docking among independent
and autonomous CONRO self-reconfigurable robot" in ICRA 2004

[3] M.W. Jorgensen, E.H. Ostergaard, H. Hautop, "Modular ATRON:
Modules for a self-reconfigurable robot" in proceedings of 2004
IEE/RSJ International conference on Intelligent Robots an Systems
(IROS 2004).

[4] http://robotics.standford.edu/users/mark/polypod.html
[5] C. Unsal and P.K. Khosla, "A multi-layered planner for self-

reconfiguration od a uniform group of I-cube modules", IEEE/RSJ,
IROS conference, Maui, Hawaii, USA, pp 598-605, Oct. 2001.
http://www-2.cs.cmu.edu/~unsal/research/ices/cubes

[6] T. Lozano-Perez & R. Brooks “An approach to automatic robot
programming” Proceedings of the 1986 ACM fourteeth annual conf on
computer science 1986, ACM Press

[7] J. S. Albus & all. NASA/NBS “Standard Reference Model for Telerobot
Control System Architecture (NASREM)”. NBS Technical Note 1235,
National Bureau of Standards, Gaithersburg, MD, 1987.

[8] P. Hudak & all “Arrows, robots, and functional reactive programming”
LNCS 159-187 Spinger Verlag 2002

[9] R. Alur & all, "Hierarchical Hybrid Modeling of Embedded Systems"
Proceedings of EMSOFT'01: First Workshop on Embedded Software,
October 8-10, 2001

[10] F. F. Ingrand & all “PRS: a high level supervision and control language
for autonomous mobile robots”, IEEE Int Cong on Robotics and
Automation Minneapolis, 1996

[11] D. Paul Benjamin & all “Integrating perception, language an problem
solving in a cognitive agent for mobile robot” AAMAS’04 july 19-23
2004, New-York

[12] I. Pembeci & G. Hager “A comparative review of robot programming
languages” report CIRL – Johns Hopkins University august 14, 2001

[13] C. Zielinski “Programming and control of multi-robot systems” Conf.
On Control and Automation Robotics and Vision ICRARCV’2000 dec
5-8 2000, Singapore

[14] J. Armstrong “The development in Erlang”, ACM sighpla international
Conference on Functional Programming p 196-203. 1997

[15] M.S. Atkin & all “HAC: a unified view of reactive and deliberative
activity”. Notes of the European Conf on Artificial Intelligence 1999

[16] G. King “Tapir: the Evolution of an Agent Control Language”
American Association of Artificial Intelligence 2002.

[17] M. Dastani & L. van der Torre “Programming Boid-Plan agents
deliberating about conflicts along defeasible mental attitudes and plans”
AAMAS 2003

[18] J. Peterson & all “A language for declarative robotic programming” Int
Conf on Robotics and Automation ICRA 1999

[19] E. Klavins “A formal model of a multi-robot control and
communication task” IEEE Conf on Decision and Control, 2003

[20] E. Klavins “A language for modeling and programming cooperative
control systems” Int Conf on Robotics and Automation ICRA 2004

[21] D.C. Mackenzie & R. Arkin “Multiagent mission specification and
execution” Autonomous Robot vol 1 num 25 1997

[22] F. Mondada & all “Swarm–bot: for concept to implementation”, IEEE/
RSJ Int Conf on Intelligent Robots and Systems IROS 2003

[23] F. Boussinot, G. Doumenc and J.B. Stefani, Reactive Objects, INRIA
Research Report RR-2664, Oct. 1995.

[24] Luc Bougé, The Data-Parallel Programming Model: a Semantic
Perspective, INRIA Research Report RR-3044, Nov. 1996.

[25] M. Dubois, Y. Le Guyadec and D. Duhaut, "Control of Interconnected
Homogeneous Atoms: Language and Simulator". Proc. of the 6th Int.
Conf. on Climbing and Walking Robots and the Support Technologies
for Mobile Machines (CLAWAR), pp 391-398

http://www-2.cs.cmu.edu/~unsal/research/ices/cubes

