
Abstract.  This  work  inserts  in  the  general  field  of  collective 
robotics. In this paper, we present the results on the design and 
the conception of (1) our robotics component called Atom, (2) 
the  informal  semantics  of  the  HoRoCoL  language  and  two 
possible execution models.  The expressivity of the language is 
illustrated on a simple example. Specific compilation problems 
are discussed.

I. INTRODUCTION

This project takes place in the more general field of reconfigurable 
modular  robotics.   We can  mention  several  various  experiments. 
The M-TRAN (Modular Transformer - AIST) described in [1], is a 
distributed  self-reconfigurable  system composed  of  homogeneous 
robotic modules. CONRO (Configurable Robot - USC), is a robot 
made  of  a  set  of  connectible,  autonomous  and  self-sufficient 
modules [2].  ATRON, is a lattice based self-reconfigurable  robot 
[3], and also, PolyPod (Xeros) [4], I-Cube (CMU) [5]. These robots 
generally  consist  in  modules  working  together  and  where  each 
module is permanently linked to at least one other.
Some inspiration of our robot comes from the biological world of 
the ants: each one has a certain autonomy, but they can help each 
other to achieve particular tasks (e.g. building a  bridge). It consists 
in several autonomous entities, called Atoms, due to their physical 
look (see Fig. 1).
Programming such  reconfigurable  systems is  a  difficult  task [6]. 
This  field  covers  very  different  concepts  like  :  methods  or 
algorithms  (planning,  trajectory  generation...),  or  classically, 
architectures for robot control, usually hierarchical : centralised [7], 
reactive [8], hybrid [9, 10, 11].  Some languages are developed in 
order  to  implement  these high  level  concepts  [12,  13].  Different 
paradigms are also proposed: functional [14, 15, 16], deliberative or 
declarative [17, 11, 18] and synchronous [12].  In any way, we can 
schematically summarise the difficulties of robot  programming in 
two great characteristics:  
• programming of elementary actions (primitives) on a robot is 

often  a  program including many process  running in  parallel 
with real-time constraints and local synchronisation

• interactions  with  the  environment  are  driven  via  traditional 
features: interrupt on event or exception and synchronisation 
with another element.

The recent introduction of teams of robot,  where cooperation and 
coordination  are  needed,  introduces  an  additional  difficulty  : 
programming the behaviour of a group of robots or even a society 
of robots  [19,  20,  21,  22].  In  this  case  (except  in  the  case  of a 
centralised control) programming implies to load a specific program 
on to each robot because of the different characteristics of robots : 
different hardware, different behaviours and different programming 
languages. These distinct programs must in general be synchronized 
to carry out missions of group (foraging, displacement in patrol, ...) 
and  have  reconfiguration  capabilities  according  to  a  map  of 
cooperation communication.
From  the  human  point  of  view  it  is  then  difficult  to  have 
simultaneously an overall vision of the group on three levels: the 
social level where we look for the global behaviour of any robot, 

the team level where we focus on a specific group of robot and the 
individual robot level.

The definition of our general language HoRoCoL is driven by these 
three levels of team programming: Social, Group, Agent. Social and 
Agent programming are very classical, the original part of this work 
is  on  the  group  programming  where  we  introduce  two  original 
instructions : ParOfSeq/SeqOfPar and the where instruction.

This paper presents the design (section II) of our robotics modular 
component, called Atom, and preliminary results on the prototype. 
Section III  introduces the  HoRoCoL language.  Its  expressivity is 
illustrated on a simple example (section IV). Section V summarise 
specific compilation problems.

II. HARDWARE ARCHITECTURE OF MAAM
In  this  section,  we  summarize  the  main  aspects  of  the  MAAM 
hardware architecture which is the experimental physical platform 
for HoRoCoL. We will first present the mechanichal and electronic 
aspects, and after, we will briefly see the communication system.

A. Electronic and mechanical features
An atom is composed of six legs which are directed towards the six 
orthogonal  directions  of space.  They allow the atom move itself 
and/or couple to another one. The first walking prototype of atom 
appears  on  Fig.  1.  This  prototype  embeds  all  the  electronic  and 
software functions described in this paper. It does not include the 
pincers.

Figure 1. Two steps in the project: simulation and walking prototype.

The control/command system has to :
(i) Control 12 axis (2 for one leg): each leg is driven by two servo-
motors and a servo-motor is controlled by a PWM (Pulse Width 
Modulation) signal. The servo includes a motor, an angle reducer 
and a P.I.D. regulator.
(ii)  Control  the coupling of two legs:  the mechanic system under 
consideration provides a flip-flop control.  The same control must 
alternatively couple then uncouple the two atoms. 
(iii) Identify the legs at the touch of the ground: an atom may have 3 
or 4 legs touching the ground at the same time. The pincers make 
the installation  of a  sensor  hard.  In  our  case,  this  information  is 
obtained by processing some control-signals of  the PID regulator. 
(iv) Line up 2 legs: the mechanical connection between two atoms 
requires  the  lining  up  of  two  legs.  We  propose  an  infrared 
transmitter/receiver  system.  The  research  for  an  optimal  position 
needs the use of 6 analog-to-digital converters for each atom. It may 
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be useful to  activate or desactivate the transmitter if necessary: that 
leads to add 6 digital outputs  in our system.  
(v) Communicate with another atom or with a host computer: this 
aspect is discussed later.

The  architecture  represented  by the  diagram in  Fig.  2  takes  the 
previous enumeration of functions and constraints into account.

Figure 2. Embedded electronics : TE505 CSoC with external memory, AD 
convertor card and external bluetooth module for radio-communication

It  is  build  around  a configurable  system on chip  (CSoC),  which 
integrates  a  micro-controller  and  a  FPGA  (Field  Programmable 
Gate Arrays) in a single component. The micro-controller provides 
usual functions of a computing architecture: central unit, serial line, 
timers, internal memory,... FPGA enables to realize the equivalent 
of an input/output card with low  level functionalities. It provides 
most  of  classical  combinatory  and  sequential  circuits  (latches, 
counters,  look--up--tables,  comparators  ...).  We've  opted  for  the 
Triscend TE505 CSoC. This component integrates a CPU 8051, a 
FPGA with 512 cells and an internal 16KB RAM. 
Inputs an outputs:  all IO functions are distributed among FPGA 
and external cards. As many as possible functions are embedded.  
PWM control: position control of servo-motors is obtained PWM. 
The position is proportionate to the width of a periodic pulse. The 
period is about 20 ms, the range of the pulse width is from 0.9ms to 
2.1ms The servo performs the position loop.and the FPGA provides 
the 12 PWM control signals.  Contact detection is taken from the 
internal circuitry of the servo-motor. By processing the command 
pulses  with some combinatory logic and a retriggerable monostable 
we get a boolean information. 
Infrared positioning: coupling one atom to another involves lining 
up two legs. The accuracy of alignment will be fixed by mechanic 
constraints of the system under development.  The solution which 
has  been  carried  for  lining  up  two  legs  implements  infrared 
transmitter/receiver.  It  involves  a  dialog  between  two  atoms that 
become alternately transmitter then receiver. To do that, 6 channels 
digital-to-analog  converters are required, and 6 outputs (taken on 
the  CSoC)  to  control  the  transmitters.  Analogic  to  digital 
conversion  is  done  with  a  max117  working  in  pipelined  mode. 
Signals  used  for  driving  the  convertor  in  this  mode   are  also 
generated by the FPGA, so we have just to read data registers. 
Coupling control:  for coupling one atom to another,  we have to 
activate a pincer.  Due to  size and weight  feature,  we propose to 
drive the pincer with a SMA affector (shape memory alloy). 

B. Embedded software
The dynamic aspect of the embedded software is described in Fig. 
3. The interpreter is the normal background task. Communication 
and  program  management  (upload  and  download)  are  coded  in 
interrupt  routines.  When  the  connection  is  established,  a  new 
program can be uploaded on the fly and launched immediately. In a 
centralized approach, the main program is desactivated, and robots 
execute simple orders received from the communication layer.
An important point of view in our approach, is the modelisation of 
low level functions of the robot in a XML file. The robot keeps in 
memory a card of all its capabilities, and can export  it towards a 
host. With this feature, a priori knowledge on robot capabilities is 
not required, provided that it gives its own interface (DTD). 
The interpreted program uses only the instructions described in the 
interface,  and,  in  a  centralized  control,  the  HoRoCoL  program 
sends orders according to this interface.

Figure 3. General architecture of the embedded software. The 
communication manager receives orders and new programs. It also manages 

bluetooth connections and disconnections. The program interpreter is 
activated or stopped by the communication manager.

C. Communication between modules
The  communication  is  an  inescapable  aspect  in  a  multi-agent 
architecture.  The  characteristics  of  the  selected  technology  has 
consequences  on  the  final  software  architecture.  An  atom must 
communicate  with  one  or  more  of  its  neighbors  (autonomous 
approach),  and/or  with a host-system (centralized approach).  Our 
realization is build with bluetooth technology that gives us suitable 
responses for noise constraint, miniaturization of modules and low 
cost. We use it just above the HCI (Host Control Interface) layer. 
That  allows  us  to  control  the  complete  bluetooth  device  (link 
management and baseband). HCI packets contain either user data or 
command.  All  layers  from radio  to  HCI are  implemented  in  the 
industrial module (we can see it on Fig. 2). 

There are several ways to manage a set of communicating robots 
with bluetooth: we can let the modules inquire after the host and 
require  a  connection  link when  they found  it;  we  can  broadcast 
messages for all robots in the bluetooth area;  we can try to establish 
dedicaced links with all the detected modules. In a first approach, 
we have chosen the third solution. We can create links between the 
host  and  robots,  and  ask  a  robot  to  connect  to  another  one  to 
transmit received orders to it. This leads to an ad-hoc network. The 
communication  between  agents  is  held  by  a  class  SetRobots 
wich provides services (connection, disconnection, inquiry ...), and 
notifies  all  suscribed  tasks  for  events.  This  class  is  reusable  for 
many applications. Fig. 4 shows a set of 8 modules detected in the 
bluetooth area.  



Figure 4. Eight CPUs are communicating with the host. Basic commands, 
and/or request for XML description can be performed.

III. THE HOROCOL LANGUAGE

HoRoCoL  stands  for  Homogeneous  Robotics  Component 
Language. It was initialy designed to control specific agents, but its 
features also allow to control generic ones. It enables to describe the 
behaviour  of  sets  of  homogeneous  agents  (deliberative  part  plus 
actuative  part)  in  a  unique  centralized  program (expressed  in  an 
extended Java like syntax) which communicates and synchronizes 
local  or  distant  agents.  Thus,  it  takes  advantage  of  the  parallel 
model with shared variables for high level control (global shared 
variables are used for communication purpose), but also offers the 
parallel model with distributed memory (where communication are 
implemented  via  message  passing).  Furthermore,  following  the 
SPMD programming model (Single Program Multiple Data) [24], 
HoRoCoL  implicitly  works  on  the  set  of  all  agents:  it  is  not 
necessary to  name agents  for  methods  invocation.  This  property 
facilitates  scalability,  test  and  reuse.  The  main  problem  with 
writting  classical  parallel  programs  is  to  ensure  consistency  of 
shared variables and absence of deadlock. Thus, HoRoCoL offers 
implicit synchronization mechanisms and guaranties consistency of 
access.
Supported  agents  are  implemented  via  active  objects  (software 
agent)  or  reactive  systems  (robotic  agent)  doted  with 
communication features (bluetooth in our  experiments).  From the 
programmer's point of view, each agent embeds a XML interface it 
exports  to  a  dedicaded  host.  This  interface  is  imported  into  a 
HoRoCoL program using the import keyword. It presents the list 
of functions implemented by an agent. The DTD (Document Type 
Definition) attached to each agent type, associates to each operation 
an information on the communication protocol and gives an objet 
oriented approach to the description of an agent type (especially in 
the  case  of  robotics  agents).  The  HoRoCoL  language  is  thus 
independend  of  communication  protocols  and  synchronisation 
mechanisms.  It  uses  this  interface  has  an  entry  point  to 
communicate with agents.

In  HoRoCoL,  a  high-level  point  of  view  is  offered  to  the 
programmer  who  describes  (deliberative)  control  of  agents, 
according to 3 layers in the language : social, group and local. Local 
programming can be expressed using any language supported by the 
agent, provided that its XML interface is exported to the dedicated 
host.  The chalenge of compiling such programs is to feel the gap 

between this centralized point of view and distributed asynchronous 
executions.

Figure 5. General Architecture – centralized model

Two execution models are investigated: centralized and distributed. 
In the centralized execution model (described below),  a dedicated 
server loads and interpretes the HoRoCoL program, runs it localy 
communicating  with  distributed  agents.  This  execution  model  is 
very close to the abstract point of view proposed by HoRoCoL. In 
the  distributed  execution model a local version  of the HoRoCoL 
program is replicated onto each agent. Many problems have to be 
adressed  in  this  case:  they  are  discussed  in  section  V 
(Implementation and Compilation Issues). 

In  this  paper,  we only focus on  the definition  of the  centralized 
execution model (see Fig. 5).

A. Social layer
This layer allows to control (possibly empty)  sets of agents - for 
instance maam, players or clock – in a parallel shared point of view 
(shared scalar variables, shared events, seq, if, loop, parallel). The 
following skeleton shows a typical social layer program:

import agentType1.xml;
import agentType2.xml;
program_Horocol aSqueleton {
  agentType1 use agentType1.xml;
  agentType2 use agentType2.xml;
  event aGlobalSharedEvent;
  int aGlobalSharedInt;
  agentType1 a1,a2 = newAgent(agentType1);
  agentType2 a3,a4 = newAgent(agentType2);
  ||(°GP1°,[GP2]);
}

In  this  example,  two  kind  of  agents  are  manipulated.  Their 
functionnal  interface is imported and 2 first-class type identifiers 
are declared:  agentType1,  agentType2.  Agents of that type are 
allocated, then programs  GP1 and  GP2 runs in parallel on distinct 
sets  of  agents,  depending  of  agent  type  conditions  (see  section 
group  layer  below).  The  construct  ||(GP1,GP2)  enables 
parallelism. It terminates when  GP1 and  GP2 have terminated. The 
skeleton  also  illustrates  interruptible  program  °GP1° and 



uninterruptible  program  [GP2].  The  informal  meanning  is  that 
°GP1° terminates as soon as GP2 does.

Communications  are  possible  using  shared  variables.  Their 
implementation  has  to  ensure  consistency  of  access.  They  are 
manipulated  using  classical  sequential  control  structures.  This 
sequential  flow  control  can  spawn  into  several  flow  control 
(threads). Each (distant) agent is then represented by a centralized 
thread,  called  proxy  thread,  running  its  private  version  of  the 
HoRoCoL  program.  This  thread  chooses  its  branch  of  social 
parallelism according to agent-type conditions, declaring/accessing 
local variables. 

B. The group layer
This layer  allows to describe asynchrony (ParOfSeq),  synchrony 
(SeqOfPar) and events. The ParOfSeq/where construct allows to 
describe asynchronous concurrency in a single program manner. We 
consider  the  following  abstract  skeleton  of   the  ParOfSeq 
construct:

ParOfSeq(agentType) {
  event aSharedEvent;
  int aSharedInt; 
  where (localCondifion1) {
    event aLocalEvent;
    int aLocalInt;
    P1;
  }
  where (localCondition2) { 
    P2;
  }
react
  when aSharedEvent => P3;
  when aLocalEvent  => P4;
}

In this program, agentType enables to select a type of agents.  For 
instance players  or maam.  The following bloc only applies to that 
subset of (homogeneous) agents. Each proxy thread agent chooses a 
where branch regarding to local conditions stored in the agent (to 
which  one  can  access  using  its  published  XML  interface).  The 
associated bloc (P1 or P2) is then executed asynchronously. In this 
bloc,  local  or  global  events  can  be  emitted  using  the  emit 
construct.  Local  events  are  declared  and  allocated  by any proxy 
thread running the considered bloc: they can be used to program 
reactive behavior of a given agent. Shared events are broadcasted to 
all  active  agents  in  the  current  scope.  Events  are  treated  in  the 
react bloc associated to each  ParOfSeq. Specific keywords are 
available here: resume, restart and reevaluate.
• resume enables to continue the current where in sequence.
• restart enables  to  reexecute  the  current  where bloc, 

restarting at its first intruction. 
• reevaluate enables to reexecute the current  ParOfSeq bloc. 

So  a  new  where branch  can  be  choosen,  depending  on  the 
(changed) internal state of the agent. 

Note  that  the  react bloc  and  the  associated  keywords  resume, 
restart and  reevaluate are  only  available  in  the  ParOfSeq 
construct.  This  is  due  to  the  asynchronous  underlying  paradigm 
which associates a proxy thread to  each agent.  In  a synchronous 
bloc, this arise to ambiguous semantics.

In the SeqOfPar/where construct, agents execute their where bloc 
synchronously. Two cases can be studied, depending on the number 
of where branches attached to the current SeqOfPar (2 branches 
in the skeleton below). 

SeqOfPar(agentType) {
  int aSharedInt; 

  where (localCondifion1) {
    int aLocalInt;
    I11;
    I12;
    I13;
  }
  where (localCondition2) { 
    I21;
    I22;
    // skip inserted
  }
}

In the case of a unique where branch, agents that satisfy the where 
condition  execute  the  associated  bloc  synchronously.  The 
complementary  set  is  desactivated  for  the  rest  of  the  current 
SeqOfPar, waiting for the active set to terminate its  where bloc. 
Note  that  since HoRoCoL offers  a high  level  point  of view,  the 
grain  of  synchrony  is  the  instruction  (HoRoCoL  instruction  or 
message sent to a distant agent).  So,  for a given set of agent, all 
occurs as if a synchronisation barrier was placed at the end of each 
instruction.  In  the  case  of  several  where branches  in  the  same 
SeqOfPar, each proxy agent localy decides which  where branch 
(possibly none) it will execute depending on the evaluation of local 
conditions. Then, all the branches are computed synchronously: the 
second instruction of each bloc (I12 and I22) starts when the first 
instruction of all the where branches (I11 and I21) is terminated 
for all active agent. In the case of dissymetric where branches (with 
different  sizes),  all  occurs  as  if  skip instructions  (which  does 
nothing and just terminates) where added at the end of each bloc to 
reach the right size (the size of the longest where bloc). In the case 
of loops, unrolled loops are considered.

IV. USING HOROCOL TO CONTROL ROBOTICS ATOMS: AN EXAMPLE

In this section, the HoRoCoL architecture descibed below is applied 
to  robotics  Atoms.  Fig.  6  shows  the  UML  class  diagram 
corresponding to the XML DTD exported by any Atom involved in 
a HoRoCol execution.

FIGURE 6. (SIMPLIFIED) CLASS DIAGRAM OF AN ATOM.



Following  the  centralized  execution  model,  it  enables  to 
communicates  with  distant  atoms  using  classical  remote  method 
invocation.  This  class  diagram1 reflects  the  hierarchy  of  the 
mechatronics and mechanics components of an Atom : 
• An Atom is composed with 6 legs and embeds several sensors.
• Each  Leg offers  2  degrees  of  freedom  driven  by  2 

ServoMotor that  may  be  controled  using  position 
parameters :  see the get/setTargetPosition, goTo and 
moveTo methods.  moveTo offers  control  of  trajectories  (a 
straight line from origin to destination) while  goTo does with 
the current servomotor speed (possibly segmented trajectories)

• Each  Leg is  equiped  with  an  infrared  transmitter/receiver 
system which is used either to line up 2 legs (ie computation of 
optimal  positions)  before  mechanical  connection  arise,  or  to 
communicate  between  neighbors.  These  functionalities  are 
available using getValue/setOn/setOff.

• Each Leg is also equiped with a TouchSensor that enables to 
deduce collisions, contact with ground,  ... It  should permit to 
infer knowledge on the current orientation of a given atom.

• A Pincer  enables to connect Atoms.

This  API  is  imported  in  the  HoRoCoL example  program below 
using  the  MAAM.xml file.  The  goal  for  a  row of  interconnected 
atoms  is  to  walk  during  3  minutes.  In  order  to  maintain  it  in 
balance, it is  necessary  to lift only one leg out of 2 per atom at a 
given moment.
Programming the  social  level  consists  in  the  instanciation  of  all 
agents,  their  initialization  and  the  execution  in  parallel  of  two 
programs concerning each type of agent.
We make the assumption that the initial state (S0) is a  row of inter-
connected  atoms  having  their  servo-motors  in  their  canonical 
position i.e. legs of all the atoms are centered (see Fig.  7.a).  To 
facilitate the comprehension of the source code, some constants are 
provided in the environment: left and right respectively indicate 
the index of the left legs and right ones which are on the ground.  In 
the same way constants min, middle and max respectively indicate 
the minimal, default and maximum position of any servo-motor.

import MAAM.xml;
import Clock.xml;
programHorocol walkingRowWithTimeOut {
  type maam use MAAM.xml;
  type clock use Clock.xml;
  maam a1, a2, a3 = newAgent(maam);
  clock watch=newAgent(clock);
  // Suppose S0 be the initial state 
  // Runs in parallel 2 control programs 
  ||(°aRow°,[aClock]); 
}

Program aClock runs a countdown and terminates after 3 minutes. 
The Clock.xml file defines the unique method waitSec(). After 
3  minutes,  the  program  aClock terminates,  which  causes  the 
termination  of  the  program  aRow which  was  launched  in 
interruptible mode as defined by the °P° construct.

int time=180;
ParOfSeq(clock) { 
  where (true) {
    while (time>0) {
      // send message to wait one second
      waitSec(1);
      time--;
    }
  }
}

1 a full version is available at : 
www-valoria.univ-ubs.fr/Dominique.Duhaut/maam

Figure 7. States S0, S1, S2, S3 of the main loop

Program aRrow describes calculation allowing the row to advance 
(1 iteration = 1 step for all  the atoms). It  is splitted in 3 phases 
which are repeated in a while loop (loop invariant:  all the legs on  
the ground are behind – see state S1).
• The first phase (from S0 to S1 or from S3 to S1, see Fig. 7.b) 

consists in positioning left and right legs behind.  For that, 
it  is  not  necessary  to  lift  the  legs.  Since  no  synchronism 
between atoms is required,  the ParOfSeq construct is used.    

• In the second phase (from S1 to S2, see Fig. 7.c), left legs are 
moved ahead for the odd atoms and right legs are moved ahead 
for the even ones.  

• The  last  phase  (from  S2 to  S3,  see  Fig.  7.d)  puts  the 
complementary legs ahead.

These two last phases require a synchronism between atoms. Thus, 
there is a sequence of 2 SeqOfPar. In order to maintain the row in 
balance, we have to ensure that all the atoms have terminated the 
current moveTo() order of the left or right legs before starting 
the next move. When the goal is reached (the 3 minutes are spent), 
the program leaves the infinite while loop.

while (true) {
  ParOfSeq(maam) {
    // phase 1
    where (true) {
      getLeg(left).moveTo(min,min);
      getLeg(right).moveTo(min,min);
    }
  };
  SeqOfPar(maam){
    // phase 2
    where (getID()%2==1) {
      getLeg(left).moveTo(min,middle);
      getLeg(left).moveTo(max,middle);
      getLeg(left).moveTo(max,min);
    };
    where (getID()%2==0) {
      getLeg(right).moveTo(min,middle);
      getLeg(right).moveTo(max,middle);
      getLeg(right).moveTo(max,min);
    };
  };
  SeqOfPar(maam){
    // phase 3
    where (getID()%2==1) {
      getLeg(right).moveTo(min,middle);
      getLeg(right).moveTo(max,middle);
      getLeg(right).moveTo(max,min);
    };
    where (getID()%2==0) {
      getLeg(left).moveTo(min,middle);
      getLeg(left).moveTo(max,middle);
      getLeg(left).moveTo(max,min);



    };
  }
}

As you can see, this algorithm is adapted to rows with unspecified 
size  (scalability).  Furthermore,  its  structure  is  close  to  intuitive 
mind.

V. IMPLEMENTATION AND COMPILATION ISSUES

In this section, we discuss compilation problem and implementation 
issues, depending on the target robot (simulation under ODE2 [25] 
or real Atoms) and the execution model (centralized or distributed). 
To achieve these different plateforms, several  MAAM.XML files are 
under definition. They include information on :
• the robot primitives or local public variables specification;
• the language syntax used to program this robot;
• the HoRoCoL system primitives available on the target.
One can distinguish 2 kind of problems :
– Programming  the  robot  primitives  and  building  the 

corresponding MAAM.XML file depends on the robot underlying 
system. In case of a reactive system (our simulation approach), 
non-blocking  messages  are  sent.  So  a  mechanism  of 
acknowledgment or future may be used to provide information 
on  methods  termination.  This  may  be  usefull  to  provide 
accuracy  of  movements.  This  is  necessary  to  ensure  the 
semantics  of  some  HoRoCoL  constructs  :  SeqOfPar, 
ParOfSeq,  ||. These mecanisms enable to build the necessary 
synchronisation barriers. 

– The implementation of some HoRoCoL concepts (SeqOfPar, 
broadcast  of  events,  shared  variables,  react,  resume, 
reevaluate, restart) depends on the target execution model 
(centralized or distributed).  In  case of a distributed execution 
model,  the HoRoCoL program is replicated onto each Atom. 
events,  access  to  (virtualy)  shared  variables  (physically 
replicated)  and  synchronisation  mechanisms  have  to  be 
implemented on top of the bluetooth network.  Consistency of 
access to shared variables has to be ensured in this case.  We 
study  the  possibility  to  use  the  Distributed  Reactive  Object 
Model [23] on top of the bluetooth device to have broadcast of 
events (in  the centralized execution  model,  events  are simply 
emitted  and  handled  on  the  server  side),  the  synchronization 
barriers and the global instant concept (shared logical clock).

VII. CONCLUSION

We have presented a high  level  set  of tools  for  designing multi-
robots  architectures,  and  more  particularly  the  Maam  self-
reconfigrable robot that is our contribution. Because the problems 
of motion for a crystal  and docking between atoms are very hard, 
we propose to focus first on high-level tool build above a robust 
communication layer instantiated in the control system and in each 
module.  Moreover,  by using  XML for  robotic  design,  we  get  a 
methodological approach that should really improve the efficiency 
when designing new robots: the high-level tools don't change, and a 
great part of the embedded software remains the same.

HoRoCoL is designed on top of these developpements. It offers the 
programmer  a  high-level  point  of  view  by  mixing  different 
paradigms:  parallel  with  shared  variables,  distributed  with 
communication  by  message,  SPMD.  Specific  constructs  are 
proposed  to  deal  with  implicit  synchronisations: 
SeqOfPar/ParOfSeq/where.  We  think  this  language  is  well 
adapted  to  modular  robotics,  but  it  can  also  be  used  to  control 
software agents.

2 Open Dynamics Engine www.ode.org
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